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Abstract

The present work addresses the problem of calculation of the macroscopic effective elastic properties of composites
containing transversely isotropic phases. As a first step, the contribution of a single inhomogeneity to the effective elas-
tic properties is quantified. Relevant stiffness and compliance contribution tensors are derived for spheroidal inhomo-
geneities. The limiting cases of spherical, penny-shaped and cylindrical shapes are discussed in detail. The property
contribution tensors are used to derive the effective elastic moduli of composite materials formed by transversely iso-
tropic phases in two approximations: non-interaction approximation and effective field method. The results are com-
pared with elastic moduli of quasi-random composites.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Evaluation of the effective elastic properties of inhomogeneous materials has a very long history but it is
still one of the most actual problems of micromechanics. In a contrast with the composites containing iso-
tropic phases, very few explicit analytical results can be found in literature related to three-dimensional ma-
trix composites with anisotropic components. It is related to significant mathematical difficulties appearing
in such problems.
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We should note that the flux of papers on the effective elastic properties of composites with iso-
tropic constituents was inspired by the celebrated papers of Eshelby (1957, 1959, 1961) about a single
ellipsoidal inhomogeneity. The review of methods developed on this background was given by Hashin
(1983).
Mura (1982) has derived an integral form of the Eshelby�s type solution for a single inclusion in an aniso-

tropic medium. However, the implicit character of the solution does not allow one to apply it directly to the
calculation of the effective properties of composites. Seven years later, Withers (1989) obtained components
of the Eshelby�s tensor for a spheroidal inhomogeneity embedded in a transversely isotropic matrix. Re-
cently, Kushch and Sevostianov (2004) derived expression for the effective elastic stiffness tensor of a trans-
versely isotropic elastic solid containing arbitrarily placed spherical inclusions, employing the method of
multipole expansion for series solution. We also have to mention several papers addressing composite mate-
rials with transversely isotropic piezoelectric phases. Elastic properties can be obtained from these results as
a limiting case. The effective properties of piezocomposites are derived in explicit form for fiber reinforced
materials. Several methods of averaging were proposed for this aim. Comparison of the various schemes
and detailed literature review is given by Sevostianov et al. (2001).
The present paper constitutes a further progress in these studies. A unified description covering inhomo-

geneities of diverse shapes is developed. The approach yields in a unified way, the effective elastic moduli for
an inhomogeneous material consisting of transversely isotropic phases. The effective moduli are derived in
two approximations:

(a) Non-interaction approximation. This approximation appears to be the most important one, since it
serves as a basis for various one particle approximations that account for interaction by placing
non-interacting inhomogeneities into some ‘‘effective environment’’ (either effective matrix, or effective
elastic field).

(b) Effective field method proposed by Kanaun (1983), Kanaun and Levin (1993, 1994), Markov (1999). In
this method, the interaction between inhomogeneities is accounted for by placing a representative inclu-
sion into the average stress (or strain) field.

The analysis is done in the framework of linear elasticity and covers the case when axes of geometrical
symmetry of spheroidal inhomogeneities coincide with the axes of the material symmetry of the matrix.
Axes of anisotropy of the inhomogeneities are not necessarily aligned with them. In the Cartesian coordi-
nate system, Oxyz, with Oz axis aligned with the anisotropy axis of transversely isotropic elastic material,
the generalized Hook�s law has the following form:
r11 ¼ C01111e11 þ C01122e22 þ C01133e33; r13 ¼ 2C01313e13
r22 ¼ C01122e11 þ C02222e22 þ C02233e33; r23 ¼ 2C01313e23
r33 ¼ C01133e11 þ C02233e22 þ C03333e33; r12 ¼ C01111 � C01122

� �
e12

ð1:1Þ
where C0ijkl are components of the elastic stiffness tensor. The components of the stress tensor rij satisfy the
elastic equilibrium equations rij,j = 0 and the strain tensor eij is related to the displacement vector ui by
eij ¼ 1

2
ðui;j þ uj;iÞ.

Our analysis follows methodology developed by Kachanov et al. (1994) and is based on one-particle
solution for transversely isotropic material. First, we obtain expressions for stiffness and compliance con-
tribution tensors of a spheroidal inhomogeneity embedded in a transversely isotropic matrix. The results
are specified for three geometries of inhomogeneities––strongly oblate, spherical, and strongly prolate ones.
The case of isotropic matrix (see Sevostianov and Kachanov, 2002) is recovered as a limiting case. Then, the
stiffness and compliance contribution tensors are used to calculate the effective elastic properties of the
composite.
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2. Single inhomogeneity

2.1. Statement of the problem

We consider a certain reference volume V of an infinite three-dimensional transversely isotropic medium
with an embedded inclusion of volume V*––a region possessing elastic properties different from those of the
surrounding material. The properties of the inclusion and of the matrix will be denoted by an asterisk and
by ‘‘0’’, respectively. We assume the perfect contact between the matrix and the inclusion:
½ui� ¼ 0; ½rijnj� ¼ 0 ð2:1Þ
where ui is displacement vector, rij is the stress tensor and nj is unit vector normal to the interface. The
bracket stands for the difference between the values of a function at different sides of the interface.
We start from the system of equilibrium and compatibility equations for the medium with a single

inclusion
div½rklðxÞ� ¼ 0; Curl½SijklðxÞrklðxÞ� ¼ 0 ð2:2Þ
where the Curl is the operator of compatibility. We assume that the tensor Sijkl(x) is represented in the form
SijklðxÞ ¼ S0ijkl þ S1ijklV ðxÞ; S1ijkl ¼ S�
ijkl � S0ijkl ð2:3Þ
where V(x) is the characteristic function of the domain V*. This allows to write
divrklðxÞ ¼ 0; Curl½S0ijklrklðxÞ� ¼ �Curl½S1ijklrklðxÞ�V ðxÞ ð2:4Þ
Using an ordinary procedure (see Kunin, 1983) the system of differential equations can be replaced by
equivalent integral equation as follows:
rklðxÞ ¼ r0klðxÞ þ
Z
V
Qklijðx� x0Þ½S1ijklrklðx0Þ�dx0 ð2:5Þ
where r0klðxÞ is the external field which satisfies the equation

Curl½S0ijklr0klðxÞ� ¼ 0 ð2:6Þ
and given conditions at infinity. In other words, r0klðxÞ is the solution of corresponding homogeneous equa-
tion. The kernel of Eq. (2.5) can be expressed via the second derivatives of the Green tensor Gij for displace-
ment in elastic medium as follows:
QijmnðxÞ ¼ �C0ijpq½IpqmndðxÞ þ PpqklðxÞC0klmn�; P ijklðxÞ ¼ GiÞðk;lÞðjðxÞ
C0klmn ¼ ðS0klmnÞ

�1
; I ijmn ¼ diðmdnÞj

ð2:7Þ
where the parenthesis in subscripts means operation of symmetrization by corresponding indices, for exam-
ple diðmdnÞj ¼ 1

2
ðdimdnj þ dindmjÞ.

Let us consider the Cartesian coordinate system with axes coinciding with the semi-axes ai of the ellip-
soidal domain V*. Then, the ellipsoid can be described using the following relation:
xkðakjÞxj 6 1; aij ¼ a�2i dij ð2:8Þ

If the external field r0ijðxÞ is uniform in the domain V, then the stress field rij(x) is also uniform inside V
(Eshelby, 1957) and can be determined by the following relations:
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rijðxÞ ¼ ½I ijkl þ QijmnðaÞS1mnkl�
�1½r0klðxÞ�; x 2 V

QijmnðaÞ ¼ C0ijpq½Ipqmn þ PpqrsðaÞC0rsmn�

PpqrsðaijÞ ¼
1

4p

Z
X1

P �
pqrsða�1ij kÞdX ð2:9Þ
where the P �
pqrsðkÞ is the Fourier transform of the tensor function Ppqrs (x) and the integration is carried out

over the unit sphere X1. If the main medium (matrix) is isotropic, tensor Ppqrs (a) has the ellipsoidal sym-
metry and is defined by nine essential components which can be expressed in terms of elliptical integrals. It
is reduced to elementary functions in the case of spheroidal shape. The explicit relations for these tensors in
the case of isotropic linear elastic medium are well known (see Sevostianov and Kachanov, 2002, for exam-
ple). In the text to follow, we determine tensor Pijkl for a transversely isotropic matrix.
Our analysis requires explicit analytic inversions of fourth rank tensors. Such inversions can be done by

representing these tensors in terms of a certain ‘‘standard’’ tensorial basis T ð1Þ
ijkl; . . . ; T

ð6Þ
ijkl (Kunin, 1983; see

Appendix A):
P ijkl ¼
X6
k¼1

pkT
ðkÞ
ijkl; Qijkl ¼

X6
k¼1

qkT
ðkÞ
ijkl ð2:10Þ
2.2. Single inhomogeneity in a transversely isotropic material

At the first step, we will derive explicit expression for tensor Pijkl in the case of transversely isotropic
matrix
P ijkl ¼
Z
V
Gik;ljðx� x0Þdx0jðijÞðklÞ ð2:11Þ
where G(x) is the Green�s function for the anisotropic unbounded medium and the symbol parenthesis ( )
stands for the symmetrization over corresponding indices. In the arbitrary anisotropic medium, the Green�s
function can be represented in the form
GikðxÞ ¼
1

r
Cikðh;uÞ ð2:12Þ
where (r,h,u) is the spherical coordinate system. Applying the approach developed by Vakulenko (1998),
Eq. (2.14) can be transformed in the surface integral over the unit sphere X.
P ¼ E �
Z

X
ðer � E � erÞ�1er½r�CðerÞ � erCðerÞ�dX ð2:13Þ
where er, eh, eu are the basis vector of spherical coordinate system and
r� ¼ eu

sin h
� o

ou
þ eh � o

oh
ð2:14Þ
In Eq. (2.16), the second rank tensor E depends on the inclusion form and for the spheroidal inclusion
(a1 = a2 = a,a3) it is defined by the following expression:
Eij ¼
1

a2
ðhij þ n2mimjÞ; n ¼ a

a3
; hij ¼ dij � mimj ð2:15Þ
where mi is the unit vector in the z-axis. Taking into account that the medium is transversely isotropic, it is
convenient to find the integral (2.16) in the system of cylindrical coordinates. For this purpose, tensor C(h)
and E should be rewritten as the function of (q,u,z) coordinates. Tensor C (h) and its components for the
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elastic field in transversely isotropic medium have been obtained explicitly by Kroner (1953) (and result was
corrected by Yoo, 1974). Thus,
Cikðh;uÞ ¼ CuuðhÞeu
i e

u
k þ CqqðhÞeq

i e
q
k þ CqzðhÞðeq

i e
z
k þ eq

k e
z
i Þ þ CzzðhÞezi ezk ð2:16Þ
where the quantities Cuu (h), Cqq (h), Cqz (h) and Czz(h) are expressed as
CuuðhÞ ¼
X3
l¼1

ðbl � alAlÞsin2h � alcos2h

sin2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Alsin

2h þ cos2h
p

CqqðhÞ ¼
X3
l¼1

blsin
2h þ alcos2h

sin2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Alsin

2h þ cos2h
p

CqzðhÞ ¼
X3
l¼1

cl cos h

sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Alsin

2h þ cos2h
p

CzzðhÞ ¼
X3
l¼1

dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Alsin

2h þ cos2h
p

ð2:17Þ
where coefficients al, bl, cl, and dl and A1, A2, and A3 depend on the components of the tensor of elastic
moduli and these coefficients can be represented as
al ¼
1

el
ðC1212 � C1111ÞðC3333 � AlC2323Þ þ ðC1133 þ C2323Þ2
h i

bl ¼
1

el
ðC2323 � AlC1111ÞðC3333 � AlC2323Þ þ AlðC1133 þ C2323Þ2
h i

cl ¼
1

el
ðC1133 þ C2323ÞðC2323 � AlC1212Þ

dl ¼
1

el
ðC2323 � AlC1111ÞðC2323 � AlC1212Þ

el ¼ 4pC1111C2323C1212
Y3
j¼1
ðj 6¼lÞ

ðAj � AlÞ

A1 ¼
C2323
C1212

ð2:18Þ
where A2 and A3 are the roots of the quadratic equation
C1111C2323A
2 þ ððC1133Þ2 þ 2C1133C2323 � C1111C3333ÞAþ C3333C2323 ¼ 0 ð2:19Þ
In Eq. (2.19), the basis vectors of cylindrical coordinates system eq,eu,ez are
eq ¼
cosu

sinu

0

0
B@

1
CA; eu ¼

� sinu

cosu

0

0
B@

1
CA; ez ¼

0

0

1

0
B@

1
CA ð2:20Þ
Using the relationships between the basis vectors for spherical and cylindrical coordinate systems
er ¼ eq sin h þ ez cos h; eh ¼ eq cos h � ez sin h ð2:21Þ

one can rewrite operator $* in the form
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r� ¼ eu

sin h
o

ou
þ ðeq cos h � ez sin hÞ o

oh
ð2:22Þ
Taking into account that for the spheroidal inclusion
er � E � er ¼ 1

a2
ðsin2h þ n2cos2hÞ ð2:23Þ

Z 2p

0

eu
i e

u
j du ¼

Z 2p

0

eq
i e

q
j du ¼ phijZ 2p

0

eq
i e

q
j e

q
k e

q
l du ¼ p

4
ðhijhkl þ hikhlj þ hilhkjÞZ 2p

0

eq
i e

q
j e

u
k e

u
l du ¼ p

4
ð3hijhkl � hikhlj � hilhkjÞ

ð2:24Þ
we obtain after u-integration and applying the T-basis (Appendix A)
P ijkl ¼
X3
l¼1

Z p

0

P ðlÞ
ijklðhÞ sin hdh ð2:25Þ
where
P ðlÞ
ijklðhÞ ¼ � p

2Dl
fðbl � AlalÞAlsin

2hT 1ijkl þ ð2bl � AlalÞAlsin
2hT 2ijkl � clAlðsin2h � n2cos2hÞðT 3ijkl þ T 4ijklÞ

þ 2n2ð2bl � AlalÞcos2h � 2clAlðsin2h � n2cos2hÞ þ 2dlAlsin
2h

� �
T 5ijkl þ 4dln

2cos2hT 6ijklg
ð2:26Þ
Dl ¼ ðAlsin
2h þ cos2hÞ3=2ðsin2h þ n2cos2hÞ ð2:27Þ
Finally, the integration in (2.28) over the angle h leads to

P ijkl ¼ P 1T 1ijkl þ P 2T 2ijkl þ P 3T 3ijkl þ P 4T 4ijkl þ P 5T 5ijkl þ P 6T 6ijkl ð2:28Þ
The coefficients P1, P2, P3, P4, P5 and P6 are obtained as follows:
P 1 ¼ � p
2

X3
l¼1

ðbl � AlalÞJ ðlÞ
1 ; P 2 ¼ � p

2

X3
l¼1

ð2bl � AlalÞJ ðlÞ
1 ;

P 3 ¼
p
2

X3
l¼1

clðJ ðlÞ
1 � n2AlJ

ðlÞ
2 Þ; P 4 ¼

p
2

X3
l¼1

clðJ ðlÞ
1 � n2AlJ

ðlÞ
2 Þ

P 5 ¼ �p
X3
l¼1

ð2bl � AlalÞn2J ðlÞ
2 � clðJ ðlÞ

1 � n2AlJ
ðlÞ
2 Þ þ dlJ

ðlÞ
1

h i
;

P 6 ¼ �2p
X3
l¼1

dln
2J ðlÞ
2

ð2:29Þ
where Z � �� �

J ðlÞ
1 ¼ Al

1

�1

ð1� u2Þdu
½1þ ðn2 � 1Þu2�½Al þ ð1� AlÞu2�3=2

¼ 2k2l 1� n2Alkl ln
kl þ 1
kl � 1

J ðlÞ
2 ¼

Z 1

�1

u2du

½1þ ðn2 � 1Þu2�½Al þ ð1� AlÞu2�3=2
¼ 2k2l

1

2
kl ln

kl þ 1
kl � 1

� �
� 1

� �

kl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� Aln
2

s ð2:30Þ
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Eshelby�s tensor is related to tensor Pijkl as follows:
SEijkl ¼ P ijmnC
0
mnkl ð2:31Þ
Using the algebra of tensor basis given in Appendix A, we can write tensor SEijkl in the form
SEijkl ¼
X6
i¼1

SEi T
ðiÞ
ijkl ð2:32Þ
with the coefficients SEi are as follows:
SE1 ¼ 2P 1C01 þ P 3C
0
4; SE2 ¼ P 2C

0
2; SE3 ¼ 2P 1C03 þ P 3C

0
6; SE4 ¼ 2P 4C01 þ P 6C

0
4;

SE5 ¼ 1
2
P 5C

0
5; SE6 ¼ P 6C

0
6 þ 2P 4C03 ð2:33Þ
where P1�6 are given by (2.32) and C01�6 are given by (A.8) in Appendix A. Expressions for components of
Eshelby�s tensor (the connection between Cartesian components and representation in terms of tensor basis
is given by (A.7)) completely coincide with the solution of Withers (1989). Fig. 1 illustrates it in the case of
the following elastic constants:
C01111 ¼ 2:179; C01122 ¼ 0:579; C01133 ¼ 0:689; C02323 ¼ 1; C03333 ¼ 10:345 ð2:34Þ
To calculate effective elastic properties of inhomogeneous material it is convenient to use property contri-
bution tensors Hijkl and Nijkl (see Sevostianov and Kachanov, 2002; Kachanov et al., 2004)
Hijkl ¼
V �

V
½ðS�

ijkl � S0ijklÞ
�1 þ Qijkl�

�1

Nijkl ¼
V �

V
½ðC�

ijkl � C0ijklÞ
�1 � P ijkl��1

ð2:35Þ
Below, we specify our results for three limiting cases of primary interest: n ! 1 (strongly oblate inhomo-
geneity), n ! 0 (strongly prolate inhomogeneity) and n = 1 (spherical inhomogeneity).

2.2.1. Strongly oblate spheroidal inhomogeneity

In the case of the strongly oblate (penny-shaped) geometry of the inhomogeneity, n ¼ a
a3
! 1 and the

expressions for the shape factors (2.30) are reduced to
J ðlÞ
1 ¼ p

n
ffiffiffiffiffi
Al

p þO 1

n2

� �
; n2J ðlÞ

2 ¼ 2

Al
1� p

2n
ffiffiffiffiffi
Al

p
� �

þO 1

n2

� �
ð2:36Þ
Substitution of these expressions into (2.29) gives the following formulas for tensor P and its coefficients
P1�6:
P ¼ P0 þ p
n
Pn þO 1

n2

� �
ð2:37Þ

P 1 ¼ 0; P 2 ¼ 0; P 3 ¼ 0; P 4 ¼ 0; P 5 ¼
4

C05
; P 6 ¼

1

C06
ð2:38Þ
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Fig. 1. Dependence of the components of Eshelby�s tensor on the aspect ratio of an inhomogeneity. The stiffnesses of the matrix are
C01111 ¼ 2:179; C01122 ¼ 0:579; C01133 ¼ 0:689; C02323 ¼ 1; and C03333 ¼ 10:345. The curves are completely coincide with those calculated
by formulas of Withers (1989).
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P n
1 ¼

4C06 þ C05
ffiffiffiffiffiffiffiffiffiffi
A2A3

p

4C05ð2C01 þ C02Þð
ffiffiffiffiffi
A2

p
þ

ffiffiffiffiffi
A3

p
Þ
ffiffiffiffiffiffiffiffiffiffi
A2A3

p

P n
2 ¼

1

2C05

ffiffiffiffiffiffiffiffi
C05
2C02

s
þ 4C06 þ C05

ffiffiffiffiffiffiffiffiffiffi
A2A3

p

2ð2C01 þ C02Þð
ffiffiffiffiffi
A2

p
þ

ffiffiffiffiffi
A3

p
Þ
ffiffiffiffiffiffiffiffiffiffi
A2A3

p
" #

P n
3 ¼ � 4C03 þ C05

2C05ð2C01 þ C02Þð
ffiffiffiffiffi
A2

p
þ

ffiffiffiffiffi
A3

p
Þ
ffiffiffiffiffiffiffiffiffiffi
A2A3

p

P n
4 ¼ � 4C03 þ C05

2C05ð2C01 þ C02Þð
ffiffiffiffiffi
A2

p
þ

ffiffiffiffiffi
A3

p
Þ
ffiffiffiffiffiffiffiffiffiffi
A2A3

p

P n
5 ¼ � 1

C05

ffiffiffiffiffiffiffiffi
2C02
C05

s
þ 4ð2C01 þ C02ÞC06 þ 8ðC03Þ

2

ð2C01 þ C02ÞC05ð
ffiffiffiffiffi
A2

p
þ

ffiffiffiffiffi
A3

p
Þ
ffiffiffiffiffiffiffiffiffiffi
A2A3

p
" #

P n
6 ¼

�C05ðA2 þ A3 þ
ffiffiffiffiffiffiffiffiffiffi
A2A3

p
Þ þ 4C06

2C06C
0
5ð

ffiffiffiffiffi
A2

p
þ

ffiffiffiffiffi
A3

p
Þ
ffiffiffiffiffiffiffiffiffiffi
A2A3

p

ð2:39Þ
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Note that for the computation of the principal term in expansion of P�1 with respect to n we have to retain
first two terms in P since tensor P0 in (2.37) does not have an inverse. Eshelby�s tensor can be expressed in
terms of basic tensors as follows:
SEPenny-Shaped ¼
C04
C06

T ð4Þ þ 2T ð5Þ þ T ð6Þ ð2:40Þ
In the case of rigid disk of radius a embedded into an elastic material (of volume V), we can express tensor
N in terms of tensor basis as
Nijkl ¼
a3

V
ðn1T 1ijkl þ n2T 2ijklÞ ð2:41Þ
with coefficients
n1 ¼
16

3

ffiffiffiffiffiffiffiffiffiffi
A2A3

p
ð
ffiffiffiffiffi
A2

p
þ

ffiffiffiffiffi
A3

p
Þð2C01 þ C02Þ

ð
ffiffiffiffiffiffiffiffiffiffi
A2A3

p
C05 þ 4C06Þ

n2 ¼
32

3

ffiffiffiffiffiffiffiffi
C05
2C02

s
þ

ffiffiffiffiffiffiffiffiffiffi
A2A3

p
C05 þ 4C06

2
ffiffiffiffiffiffiffiffiffiffi
A2A3

p
ð
ffiffiffiffiffi
A2

p
þ

ffiffiffiffiffi
A3

p
Þð2C01 þ C02Þ

" #�1 ð2:42Þ
and A1, A2 and A3 are given by (2.18) and (2.19). If, instead of rigid inclusions, we have a crack of radius a,
then the compliance contribution tensor has to be considered:
Hijkl ¼
a3

V
ðh5T 5ijkl þ h6T 6ijklÞ ð2:43Þ
with coefficients
h5 ¼
64

3
ffiffiffi
2

p
C05

ffiffiffiffiffiffi
C02
C05

s
þ �4ðC03Þ

2 þ 2C06ð2C01 þ C02Þ

C05ð
ffiffiffiffiffi
A2

p
þ

ffiffiffiffiffi
A3

p
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C06ð2C01 þ C02Þ

q
2
64

3
75

�1

h6 ¼
8

3

ð
ffiffiffiffiffi
A2

p
þ

ffiffiffiffiffi
A3

p
Þð2C01 þ C02Þ

C06ð2C01 þ C02Þ � 2ðC03Þ
2

ð2:44Þ
2.2.2. Strongly prolate spheroidal inclusion

In this case, a3!1 and the aspect ratio n ! 0. Then, the expressions for the shape factors (2.30) are
reduced to the following simple ones:
J ðlÞ
1 ¼ 2; n2J ðlÞ

2 ¼ 0 ð2:45Þ

Using (2.18), the following expressions can be obtained
X3
l¼1

bl ¼
1

2pC02
;
X3
l¼1

cl ¼ 0

X3
l¼1

dl ¼
1

pC05
;
X3
l¼1

ðbl � AlalÞ ¼
1

2pð2C01 þ C02Þ

ð2:46Þ
Substitution of (2.45) and (2.46) into (2.29) leads to the expression of tensor Pijkl in terms of tensor basis
with coefficients
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P 1 ¼
1

2ð2C01 þ C02Þ
; P 2 ¼

1

2ð2C01 þ C02Þ
þ 1

2C02
; P 3 ¼ 0 P 4 ¼ 0; P 5 ¼

2

C05
; P 6 ¼ 0 ð2:47Þ
and therefore, formula for the Eshelby�s tensor (2.31) can be written as
SECylinder ¼
C01

2C01 þ C02
T ð1Þ þ C01 þ C02

2C01 þ C02
T ð2Þ þ C03

2C01 þ C02
T ð3Þ þ T ð5Þ ð2:48Þ
Now formulas (2.35) allow us to write expressions for property contribution tensors of a rigid cylinder and
a cylindrical pore. In the case of a rigid cylinder, the stiffness contribution tensor Nijkl ¼ V �

V

P
anaT

ðaÞ
ijkl has the

following coefficients na:
n1 ¼ C01 þ
C02
2

� �
; n2 ¼

C02ð2C01 þ C02Þ
C01 þ C02

; n3 ¼ C03 þ
C05
4

� �
n4 ¼ C03 þ

C05
4

� �
;

n5 ¼ 2C05; n6 ¼ 1 ð2:49Þ
For the cylindrical pore, we can write Hijkl ¼ V �

V

P
ahaT

ðaÞ
ijkl with the following coefficients:
h1 ¼
2C03C

0
4 � C06ð2C01 þ C02Þ

4C02ðC03C04 � C01C
0
6Þ

; h2 ¼
1

C01
þ 2

C02

 !
; h3 ¼

C03
2ðC03C04 � C01C

0
6Þ
;

h4 ¼
C03

2ðC03C04 � C01C
0
6Þ
; h5 ¼

8

C05
; h6 ¼

C01
C01C

0
6 � C03C

0
4

ð2:50Þ
2.2.3. Spherical inhomogeneity
The case of spherical shape of the inhomogeneity (a1 = a2 = a3 = a or n = 1) loses its simplicity if the

matrix does not possess isotropic properties and the formulas for components of tensors P and SE are
rather lengthy. First of all, the expressions for the shape factors (2.30) can be written as
J ðlÞ
1 ¼ 2

1� Al
1� 1

2

Alffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Al

p ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Al

p

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Al

p
� �� �

J ðlÞ
2 ¼ 2

1� Al
�1þ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Al

p ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Al

p

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Al

p
� �� � ð2:51Þ
Substitution of these results into (2.29) gives the following expressions for coefficients Pi:
P 1 ¼
1

8Dp
�C06f1 þ

C05
4
g1

� �

P 2 ¼
J ð1Þ
1

4C02
þ P 1

P 3 ¼
1

8Dp
C03 þ

C05
4

� �
ðf1 � g2Þ

P 4 ¼
1

8Dp
C03 þ

C05
4

� �
ðf1 � g2Þ

P 5 ¼ 2P 3 þ
J ð1Þ
2

2C02
� 1

4Dp

C05
4
ðf1 � g2Þ þ C06f2 � C01 þ

C02
2

� �
g1

� �

P 6 ¼
1

2Dp
�C05
4
f1 þ C01 þ

C02
2

� �
g2

� �

ð2:52Þ
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where
f1 ¼ J ð2Þ
1 � J ð3Þ

1 ; f 2 ¼ J ð2Þ
2 � J ð3Þ

2

g1 ¼ A2J
ð2Þ
1 � A3J

ð3Þ
1 ; g2 ¼ A2J

ð2Þ
2 � A3J

ð3Þ
2

Dp ¼ C011C
0
44ðA2 � A3Þ

ð2:53Þ
and coefficients entering expression (2.33) for Eshelby�s tensor are
SES1 ¼
2C01ð�4C06f1 þ C05g1Þ þ C04ð4C03 þ C05Þðf1 � g2Þ

32Dp

SES2 ¼
C02ð�4C06f1 þ C05g1Þ

32Dp
þ J ð1Þ

1

4

SES3 ¼
C05C

0
6ðf1 � g2Þ þ C03½2C05g1 � 4C06ðf1 þ g2Þ�

32Dp

SES4 ¼
C01ð4C03 þ C05Þðf1 � g2Þ þ 2C04½�C05f1 þ 2g2ð2C01 þ C02Þ�

16Dp

SES5 ¼
C05 4DpJ

ð1Þ
2 þ C02½�2C06f2 þ ð2C01 þ C02Þg1 þ 2C03ðf1 � g2Þ�

n o
16C02Dp

SES6 ¼
�2C05C06f1 þ C03ð4C03 þ C05Þðf1 � g2Þ þ 4C06g2ð2C01 þ C02Þ

16Dp

ð2:54Þ
The property contribution tensor of a spherical inclusion of volume V * can now be obtained via formulas
(2.35). For a rigid spherical inclusion, we have the stiffness contribution tensor Nijkl ¼ V �

V

P
anaT

ðaÞ
ijkl with the

following coefficients:
n1 ¼
�C05f1 þ 2g2ð2C01 þ C02Þ

16DpDn

n2 ¼
32C02Dp

C02ð�4C06f1 þ C05g1Þ þ 8J
ð1Þ
1 Dp

n3 ¼ n4 ¼ �ð4C03 þ C05Þðf1 � g2Þ
32DpDn

n5 ¼
32C02Dp

4J ð1Þ
2 Dp þ C02½�2C06f2 þ ð2C01 þ C02Þg1 þ 2C03ðf1 � g2Þ�

n6 ¼
�4C06f1 þ C05g1
16DpDn

ð2:55Þ
where Dn ¼
�ð4C0

3
þC0

5
Þ2ðf1�g2Þ2þ4ð�4C06f1þC0

5
g1Þ½�C0

5
f1þ2g2ð2C01þC0

2
Þ�

512D2p
.

For a spherical pore, one can write the compliance contribution tensor Hijkl ¼ V �

V

P
ahaT

ðaÞ
ijkl with coeffi-

cients ha as follows:
h1 ¼
q6

4ðq1q6 � q3q4Þ
; h2 ¼

1

q2
; h3 ¼ � q3

2ðq1q6 � q3q4Þ
; h4 ¼ � q4

2ðq1q6 � q3q4Þ
;

h5 ¼
4

q5
; h6 ¼

q1
q1q6 � q3q4

ð2:56Þ
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where
q1 ¼
1

16Dp
2ðC01Þ

2ð4C06f1 � C05g1Þ þ 2C03C04ðC05f1 � 2C02g2Þ þ C01½16Dp � ðC03 þ C04Þð4C03 þ C05Þf1
n

þg2ð4C03ðC03 � C04Þ þ ðC03 þ C04ÞC05Þ�
o

q2 ¼ C02 1þ
C02ð4C06f1 � C05g1Þ

32Dp
� J ð1Þ

1

4

" #
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1

16Dp
½4ðC03Þ

3 þ ðC03Þ
2C05 þ C01C

0
5C

0
6�ð�f1 þ g2Þ þ 2C03½8Dp þ 2C01C06f1 þ C05C

0
6f1 � C01C

0
5g1

n
�2ðC01 þ C02ÞC06g2�

o
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1

16Dp
½ðC04Þ

2 þ C01C
0
6�ð4C03 þ C05Þð�f1 þ g2Þ þ 2C04½8Dp þ C01ð4C06ðf1 � g2Þ � C05g1Þ

n
þC06ðC05f1 � 2C02g2Þ�

o

q5 ¼ C05 �
ðC05Þ

2 4DpJ
ð1Þ
2 þ C02ð�2C06f2 þ ð2C01 þ C02Þg1 þ 2C03ðf1 � g2ÞÞ

h i
32C02Dp

q6 ¼
1

16Dp
�2C03C04C05g1 þ 2ðC06Þ

2½C05f1 � 2g2ð2C01 þ C02Þ� þ C06½16Dp � f1ð4C03ðC03 � C04Þ
n

þC05ðC03 þ C04ÞÞ þ ðC03 þ C04Þð4C03 þ C05Þg2�
o

ð2:57Þ

In the limiting case of isotropic material, the formulas for compliance contribution tensor recover the cor-
responding expressions derived by Kachanov et al. (1994) (cracks and cylindrical pores) and by Nemat-
Nasser and Hori (1993) (spherical cavities). In the case of rigid inclusions the formulas of Sevostianov
and Kachanov (1999) are recovered (to within two misprints in the last paper).

3. Transversely isotropic material containing multiple inclusion

3.1. Non-interaction approximation

In this approximation, the interaction between any two inclusions is neglected and therefore, each inclu-
sion is assumed to be loaded by the same remotely applied stress. The total inclusion compliance and stiff-
ness tensors are taken as a sum of individual compliance tensors. If HNI and NNI are the compliance and
stiffness tensors of non-interaction approximation, then
HNI
ijkl ¼

X
Hijkl; Seffijkl ¼ S0ijkl þ HNI

ijkl

NNIijkl ¼
X

Nijkl; Ceffijkl ¼ C0ijkl þ HNI
ijkl

ð3:1Þ
where S0ijkl and C0ijkl are compliance and stiffness tensors of the matrix. S
eff
ijkl and Ceffijkl are the effective com-

pliance and effective stiffness tensors under the assumption of non-interaction approximation.
This approximation is considered to be the most important one because of several reasons. First, it iden-

tifies the proper parameters of inclusion concentration (Kachanov, 1994) and the overall anisotropy for
inhomogeneity of various shapes. Second, it serves as a basis for the effective medium theories that account
for interactions by placing non-interacting defects into some effective environment and the last reason is
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Fig. 2. Effective elastic stiffnesses of a transversely isotropic material containing parallel spheroidal rigid inclusions of identical aspect
ratio n at various volume fractions of inhomogeneities (as functions of n). Comparison of calculations with non-interaction
approximation (3.1) and effective field method (3.26).
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that it is reasonably accurate at low inclusion volume fractions, but, for crack like inclusions, it remains
accurate up to relatively high crack densities. Dashed lines in Figs. 2 and 3 illustrate the effective elastic
moduli of a transversely isotropic material containing rigid inclusions and pores (calculated in the frame-
work of non-interaction approximation) in dependence on their shapes.

3.2. Effective field method of calculation of the effective properties

To take into account the interaction of inclusions, we first consider an infinite body containing a random
set of spheroidal inclusions having the same shape and orientation. As before, we denote by V(x) the char-
acteristic function of region V, occupied by the inclusions. The strain tensor eij (x) and stress tensor rij (x) in
the composite satisfy the following relationship (Kunin, 1983):
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eijðxÞ ¼ e0ijðxÞ þ
Z

P ijklðx� x0Þqklðx0Þdx0 ð3:2Þ

rijðxÞ ¼ r0ijðxÞ þ
Z

Qijklðx� x0ÞS0klmnqmnðx0Þdx0 ð3:3Þ
where
qijðxÞ ¼ C1ijkleklðxÞV ðxÞ ð3:4Þ
Here e0 and r0 are the external strain and stress fields acting on the medium, the kernels P(x) and Q(x) are
determined in (2.7). The integration in (3.2) and (3.3) is over the entire space. On the basis of (3.2) and (3.3),
we can write the expressions for the mean values of the strain and stress fields in the form



I. Sevostianov et al. / International Journal of Solids and Structures 42 (2005) 455–476 469
heijðxÞi ¼ e0ij þ
Z

P ijklðx� x0Þhqklðx0Þidx0

hrijðxÞi ¼ r0ij þ
Z

Qijklðx� x0ÞS0klmnhqmnðx0Þidx0
ð3:5Þ
For a spacial uniform set of inclusions eij(x), r ij (x) and qij (x) are homogeneous random ergodic functions.
Hence, hq i is a constant tensor whose value can be found by spacial averaging of a typical fixed realization
of the random function q (x). Because of the linearity of the problem the strain field eij (x) is represented by
the external field e0ij through the relation
eijðxÞ ¼ KijklðxÞe0kl ð3:6Þ
where K(x) is a certain random function of coordinates. This function has to be obtained from the solution
of many-particles problem. After substituting the expression for e(x) in the formula for q(x) and averaging
the result, we obtain
hqiji ¼ pCK
ijkle

0
kl; CK

ijkl ¼ C1ijmnhKmnkli ð3:7Þ
where p is the volume concentration of the inclusions (p = hV(x) i).
It is assumed henceforth that the average strain in the composite heijicoincides with the external field e0ij

and does not depend on the properties and concentration of the inclusions (heiji ¼ e0ij). This mean value is
determined by the conditions at infinity. In this case, the question arises of the action of integral operators
with kernels P (x) and Q (x) on constants. It was shown in Kanaun (1983) that the unique definition of these
actions depends on a given type of external field (specified in the problem): the stress field r0ij or strain field
e0ij. For instance, if the stress fields is fixed, operator P and Q act on constants as follows:
Z

Qðx� x0Þdx0 ¼ 0;
Z

P ðx� x0Þdx0 ¼ ðS0Þ�1 ð3:8Þ
However, if the deformation of the medium is constrained at infinity (the strain tensor is fixed as was sup-
posed above), the result will be different
Z

Qðx� x0Þdx0 ¼ �C0;
Z

P ðx� x0Þdx0 ¼ 0 ð3:9Þ
Hence, we can write in this case
hriji ¼ Ceffijklhekli; Ceffijkl ¼ C0ijkl þ pCK
ijkl ð3:10Þ
where C eff is the tensor of the effective elastic moduli of the composite.
Thus, the problem of obtaining the effective elastic moduli C eff reduces to evaluation of the tensor CK

determined in Eq. (3.7). This tensor depends on the solution of many-particle problem through the function
K(x). For evaluation of CK, we use below the self-consistent scheme named effective field method (EFM).
This method has a long history and was mainly used in the nuclear physics and in the theory of phase tran-
sitions for description of many-particle interaction. In application to the mechanics of composite materials,
this method was developed by Kanaun (1983), Kanaun and Levin (1993, 1994), Markov (1999).
Let us consider an arbitrary ith inclusion that occupies the region Vi in a fixed typical realization of ran-

dom set of inhomogeneities. We denote by e�ijðkÞðxÞ the local external field acting on this inclusion. The field
e�ijðkÞðxÞ is composed of the external field e0 and the disturbances of the field due to surrounding inclusions.
Self-consistent schemes in which interaction between inclusions are taken into account by introducing local
external field acting on each inclusions are called the effective field method. Let us introduce the field e�ijðxÞ
that coincides with e�ijðkÞðxÞ inside the region Vk. It follows from (3.2) that
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e�ijðxÞ ¼ e0ij þ
Z

P ijklðx� x0ÞC1klmnemnðx0ÞV ðx; x0Þdx0 ð3:11Þ
where V(x;x 0) is the characteristic function (with argument x 0) of the region Vx, defined by the relation
V x ¼
[
i6¼k

V i when x 2 V k ð3:12Þ
In the simplest variant of the effective field method, let us introduce two simplifying assumptions con-
cerning the structure of the field e�ijðxÞ, i.e. hypothesis of the EFM:

1. The field e�ijðxÞ is constant (uniform) in each region occupied by inclusions and is the same for all
inclusions.

2. The random field e�ijðkÞðxÞ does not depend statistically on the geometrical characteristics and elastic prop-
erties of the kth inclusion, occupying region Vk.

Using hypothesis one, we obtain that the strain field eij(x) is connected to e�ij by the relation obtained
above for the single inclusion
eij ¼ Aijkle
�
kl; A ¼ ðI þ PC1Þ�1 ð3:13Þ
Note that for the spheroidal inclusions of the same shapes and orientation A is the constant tensor that is
the same for all inclusions.
Relation (3.13) allows to express the strain field e(x) in the arbitrary point x of the composite via the

local effective field e*
eijðxÞ ¼ e0ij þ
Z

P ijklðx� x0ÞCA
klmne

�
mnV ðx; x0Þdx0; ð3:14Þ

CA
ijkl ¼ C1ijmnAmnkl
and to obtain the self-consistent equation for field e* determination
e�ijðxÞ ¼ e0ij þ
Z

P ijklðx� x0ÞCA
klmne

�
mnV ðx; x0Þdx0 ð3:15Þ
Let us average the both sides of Eq. (3.15) under the condition that x 2 V. Taking into account hypothesis 2
of the EFM, we can write
he�ijðxÞ j xi ¼ e0ij þ p
Z

P ijklðx� x0ÞCA
klmne

�
mnWðx� x0Þdx0 ð3:16Þ

Wðx� x0Þ ¼ hV ðx; x0Þ j xi
hV ðxÞi
Here symbol h Æ jximeans the ensemble average provided that point x is in the region V. It follows from def-
inition (3.12) for V (x;x 0) that W (x) is a continuous function and
WðxÞ ¼ 0 when x ¼ 0 ð3:17Þ
Because of the weakening in geometrical linkage between the positions of the inclusions when the distance
between them increase, the following relation takes place
WðxÞ ! 1 when j x j! 1 ð3:18Þ
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Function W (x) defines the shape of the ‘‘correlation hole’’ inside of which a typical inclusion is located (the
region in the vicinity of each inclusion the finding in which the center of some other inclusion is improb-
able). If the random set of inclusions possesses some symmetry (in the statistical sense) it influences the sym-
metry of function W (x). In the case when the random set of the inclusions is statistically isotropic, function
W(x) is spherically symmetric, i.e. W (x) = W(jxj).
The deviation from the isotropic distribution of the random set of inclusions can lead to texture. In many

cases, such texture can be describe by a two-rank tensor aij . This tensor determines the linear space trans-
form, which converts function W(x) into a spherically symmetric one
yi ¼ aijxj; Wða�1yÞ ¼ Wðj y jÞ ð3:19Þ

In this case, the ellipsoid A, defined by the expression jax j 6 1 with semi-axes a1, a2 and a3 describes the
shape of the correlation hole. Taking into account the relations (3.9) when the strain field is fixed in the
problem, we can write Eq. (3.16) in the form
he�ijðxÞ j xi ¼ e0ij � p
Z

P ijklðx� x0ÞCA
klmne

�
mnUðx� x0Þdx0

UðxÞ ¼ 1� WðxÞ
ð3:20Þ
Identifying now the mean he�ijðxÞ j xi with the effective field e�ij, we can find from (3.20)
e�ij ¼ Dijklhekli; D ¼ ðI � pPUCAÞ�1 ð3:21Þ

where it is denoted
PU
ijkl ¼ �

Z
P ijklðxÞUðxÞdx ð3:22Þ
If we assume in the considered case that the shape of the correlation hole id spheroidal (concentric with
inclusion but not necessary with the same aspect ratio) then tensor PU can be calculated explicitly.
After the connection (3.21) is established, it can be substituted in (3.13) and then we can find according

to (3.7)
CK ¼ CAðI � pPUCAÞ�1 ð3:23Þ
and
Ceffijkl ¼ C0ijkl þ pCAðI � pPUCAÞ�1 ð3:24Þ
In the special case, the shape of the correlation hole can be coincided with the shape of inclusion itself. In
this case, PU = P and expression (3.24) is simplified
Ceffijkl ¼ C0ijkl þ p½ðC1ijklÞ
�1ð1� pÞP ijkl��1 ð3:25Þ
Note that the same expression for the tensor of effective elastic moduli can be obtained for by so-called
Mori–Tanaka method (Mori and Tanaka, 1973), (Benveniste, 1987). This method is based on the assump-
tion that every inclusion in material behaves as isolated one in the matrix and undergoes a constant external
field that is assumed to coincided with the average strain field in the matrix. Hence, Mori–Tanaka�s method
gives the result coincided with the effective field method if we accept as an additional assumption that the
shape of correlation hole coincides with the shape of typical inclusion. In general, these shapes can be
different and tensors PU and P are not the same.
As it follows from (3.25), the composite material is macroscopically transversely isotropic and is

characterized by five independent effective elastic moduli. In T-basis tensor, Ceff can be written as
Ceff ¼ Ceff1 T 1 þ Ceff2 T 2 þ Ceff3 T 3 þ Ceff4 T 4 þ Ceff5 T 5 þ Ceff6 T 6 ð3:26Þ
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Fig. 4. Effective elastic constants of a transversely isotropic material containing randomly located rigid spherical inclusions.
Comparison of non-interaction, effective field and quasi-random lattice methods: (a) components of the elastic stiffness tensor and
(b) engineering constants.
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where � �

Ceff1 ¼ C01 þ

p
2D�

2C11
D1

þ ð1� pÞP 6

Ceff2 ¼ C02 þ p
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C12
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" #�1
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D�
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� ð1� pÞP 3
� �
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4

C15
þ ð1� pÞP 5
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þ 2ð1� pÞP 1
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ð3:28Þ
3.3. Comparison with the ‘‘unit cell’’ method

In the case of spherical inhomogeneities, we also compared our results with the calculations done via the
‘‘unit cell’’ method (Kushch and Sevostianov, 2004). The basic idea of this method consists in modeling an
actual micro geometry of composite by the idealized periodic structure with a unit cell containing from one
to several particles, for which the homogenization boundary-value problem is to be stated and solved.
Sometimes, this model is referred also as the ‘‘lattice’’ model reflecting the fact that the centers of inclusions
form a spatially periodic lattice. This model provides a natural way, through the periodic boundary con-
ditions on the opposite cell facets, to take into account interactions among whole infinite array of inhomo-
geneities. Also, the deterministic structure of unit cell enables an accurate solution of the corresponding
periodic boundary-value problems. These features make the unit cell approach one of the most appropriate
numerical methods for studying the high-filled strongly heterogeneous composites, where the structure and
interactions between the particles should be taken into account to a maximum possible extent.
Figs. 4 and 5 illustrate comparison of effective elastic constants calculated via non-interaction approx-

imation and effective field method of Levin and Kanaun with those obtained in the paper of Kushch
and Sevostianov (2004) by quasi-random variant of the ‘‘unit cell’’ method.
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4. Conclusions

The paper addresses the problem of calculation of the effective elastic properties of an inhomogeneous
material consisting of transversely isotropic phases. As a first step, the problem about a transversely iso-
tropic medium containing a single inhomogeneity is solved. Eshelby�s tensor for such a problem is rederived
in the form suitable for calculation of the effective properties. Then, the stiffness/compliance contribution
tensors for such an inclusion are constructed. Applying the methodology of Kachanov et al. (1994), the
property contribution tensors are used for approximation of the effective elastic properties of composites.
In the present paper, the derivation is done in the frameworks of non-interaction approximation and the
effective field method of Kanaun (1983), Kanaun and Levin (1993, 1994), Markov (1999). The results
are compared with numerical simulations via the ‘‘unit cell’’ method given by Kushch and Sevostianov
(2004). Application of other approximate schemes (Mori–Tanaka�s scheme, differential method, effective
media scheme) may be done via general formulas given in the paper of Tsukrov and Eroshkin (2004) on
the base of non-interaction approximation.
Appendix A. Tensorial basis in the space of transversely isotropic fourth rank tensors: representation of certain

transversely isotropic tensors in terms of the tensorial basis

The operations of analytic inversion and multiplication of fourth rank tensors are conveniently done in
terms of special tensorial bases that are formed by combinations of unit tensor and one or two orthogonal
unit vectors (see Kunin, 1983 and Kanaun and Levin, 1993). In the case of the transversely isotropic elastic
symmetry, the following basis is most convenient (it differs slightly from the one used by Kanaun and
Levin, 1993):
T (1)

T (2)

T (3)

T (4)

T (5)

T (6)
T ð1Þ
ijkl ¼ HijHkl; T ð2Þ

ijkl ¼ ðHikHlj þ HilHkj � HijHklÞ=2; T ð3Þ
ijkl ¼ Hijmkml; T ð4Þ

ijkl ¼ Hijmkml;

T ð5Þ
ijkl ¼ ðHikmlmj þ Hilmkmj þ Hjkmlmi þ HjlmkmiÞ=4; T ð6Þ

ijkl ¼ mimjmkml; ðA:1Þ
where Hij = dij � mimj and m = m1e1 + m2e2 + m3e3 is a unit vector along the axis of transverse symmetry.
These tensors form a closed algebra with respect to the operation of (non-commutative) multiplication
(contraction over two indices):
ðT ðaÞ : T ðbÞÞijkl � T ðaÞ
ijpqT

ðbÞ
pqkl ðA:2Þ
The table of multiplication of these tensors has the following form (the column represents the left multiplier)
T (1) T (2) T (3) T (4) T (5) T (6)

2T (1) 0 2T (3) 0 0 0
0 T (2) 0 0 0 0
0 0 0 T (1) 0 T (3)

2T (4) 0 2T (6) 0 0 0
0 0 0 0 T (5)/2 0
0 0 0 T (4) 0 T (6)
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Then the inverse of any fourth rank tensor, as well as the product of two such tensors are readily found
in the closed form, as soon as the representation in the basis
X ¼
X6
k¼1

XkT ðkÞ; Y ¼
X6
k¼1

Y kT ðkÞ ðA:3Þ
are established. Indeed

(a) Inverse tensor X�1 defined by is given by X�1
ijmnXmnkl ¼ ðX ijmX�1

mnklÞ ¼ J ijkl is given by
X�1 ¼ X 6
2D

T ð1Þ þ 1

X 2
T ð2Þ � X 3

D
T ð3Þ � X 4

D
T ð4Þ þ 4

X 5
T ð5Þ þ 2X 1

D
T ð6Þ ðA:4Þ
where D = 2(X1X6�X3X4).
(b) Product of two tensors X:Y (tensor with ijkl components equal to XijmnYmnkl) is
X : Y ¼ ð2X 1Y 1 þ X 3Y 4ÞT ð1Þ þ X 2Y 2T ð2Þ þ ð2X 1Y 3 þ X 3Y 6ÞT ð3Þ þ ð2X 4Y 1 þ X 6Y 4ÞT ð4Þ

þ 1
2
X 5Y 5T ð5Þ þ ðX 6Y 6 þ 2X 4Y 3ÞT ð6Þ: ðA:5Þ
If x3 is the axis of transverse symmetry, tensors T
(1), . . .,T(6) given by (A.1) have the following non-zero

components:
T ð1Þ
1111 ¼ T ð1Þ

2222 ¼ T ð1Þ
1122 ¼ T ð1Þ

2211 ¼ 1

T ð2Þ
1212 ¼ T ð2Þ

2121 ¼ T ð2Þ
1221 ¼ T ð2Þ

2112 ¼ T ð2Þ
1111 ¼ T ð2Þ

2222 ¼
1

2

T ð2Þ
1122 ¼ T ð2Þ

2211 ¼ � 1
2

T ð3Þ
1133 ¼ T ð3Þ

2233 ¼ 1
T ð4Þ
3311 ¼ T ð4Þ

3322 ¼ 1

T ð5Þ
1313 ¼ T ð5Þ

2323 ¼ T ð5Þ
1331 ¼ T ð5Þ

2332 ¼ T ð5Þ
3113 ¼ T ð5Þ

3223 ¼ T ð5Þ
3131 ¼ T ð5Þ

3232 ¼
1

4

T ð6Þ
3333 ¼ 1

ðA:6Þ
A general transversely isotropic symmetric fourth rank tensor, being represented in this basis
Wijkl ¼

P
wmT

m
ijkl has the following components:
w1 ¼ ðW1111 þ W1122Þ=2; w2 ¼ 2W1212; w3 ¼ W1133; w4 ¼ W3311; w5 ¼ 4W1313; w6 ¼ W3333

ðA:7Þ

In this manner, we could write the components of the stiffness tensor as follows:
C01 ¼ ðC01111 þ C01122Þ=2; C02 ¼ 2C01212; C03 ¼ C01133; C04 ¼ C03311; C05 ¼ 4C01313; C06 ¼ C03333
ðA:8Þ
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