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Abstract

The present work addresses the problem of calculation of the macroscopic effective elastic properties of composites
containing transversely isotropic phases. As a first step, the contribution of a single inhomogeneity to the effective elas-
tic properties is quantified. Relevant stiffness and compliance contribution tensors are derived for spheroidal inhomo-
geneities. The limiting cases of spherical, penny-shaped and cylindrical shapes are discussed in detail. The property
contribution tensors are used to derive the effective elastic moduli of composite materials formed by transversely iso-
tropic phases in two approximations: non-interaction approximation and effective field method. The results are com-
pared with elastic moduli of quasi-random composites.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Evaluation of the effective elastic properties of inhomogeneous materials has a very long history but it is
still one of the most actual problems of micromechanics. In a contrast with the composites containing iso-
tropic phases, very few explicit analytical results can be found in literature related to three-dimensional ma-
trix composites with anisotropic components. It is related to significant mathematical difficulties appearing
in such problems.
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We should note that the flux of papers on the effective elastic properties of composites with iso-
tropic constituents was inspired by the celebrated papers of Eshelby (1957, 1959, 1961) about a single
ellipsoidal inhomogeneity. The review of methods developed on this background was given by Hashin
(1983).

Mura (1982) has derived an integral form of the Eshelby’s type solution for a single inclusion in an aniso-
tropic medium. However, the implicit character of the solution does not allow one to apply it directly to the
calculation of the effective properties of composites. Seven years later, Withers (1989) obtained components
of the Eshelby’s tensor for a spheroidal inhomogeneity embedded in a transversely isotropic matrix. Re-
cently, Kushch and Sevostianov (2004) derived expression for the effective elastic stiffness tensor of a trans-
versely isotropic elastic solid containing arbitrarily placed spherical inclusions, employing the method of
multipole expansion for series solution. We also have to mention several papers addressing composite mate-
rials with transversely isotropic piezoelectric phases. Elastic properties can be obtained from these results as
a limiting case. The effective properties of piezocomposites are derived in explicit form for fiber reinforced
materials. Several methods of averaging were proposed for this aim. Comparison of the various schemes
and detailed literature review is given by Sevostianov et al. (2001).

The present paper constitutes a further progress in these studies. A unified description covering inhomo-
geneities of diverse shapes is developed. The approach yields in a unified way, the effective elastic moduli for
an inhomogeneous material consisting of transversely isotropic phases. The effective moduli are derived in
two approximations:

(a) Non-interaction approximation. This approximation appears to be the most important one, since it
serves as a basis for various one particle approximations that account for interaction by placing
non-interacting inhomogeneities into some “‘effective environment” (either effective matrix, or effective
elastic field).

(b) Effective field method proposed by Kanaun (1983), Kanaun and Levin (1993, 1994), Markov (1999). In
this method, the interaction between inhomogeneities is accounted for by placing a representative inclu-
sion into the average stress (or strain) field.

The analysis is done in the framework of linear elasticity and covers the case when axes of geometrical
symmetry of spheroidal inhomogeneities coincide with the axes of the material symmetry of the matrix.
Axes of anisotropy of the inhomogeneities are not necessarily aligned with them. In the Cartesian coordi-
nate system, Oxyz, with Oz axis aligned with the anisotropy axis of transversely isotropic elastic material,
the generalized Hook’s law has the following form:

_ 0 0 0 A0

on = Cyyppén + Clipen + Chipséas, 013 = 2055813
0 0 0 A0

02 = Ciipén + Conmen + Cppéss, 023 = 2055803 (1.1)
0 0 0 (0 0

033 = Clig3811 + Cpaén + Ciypaén, 012 = (Cllll - C1122>812

where Cg.k, are components of the elastic stiffness tensor. The components of the stress tensor g;; satisfy the
elastic equilibrium equations a;; =0 and the strain tensor g; is related to the displacement vector u; by
gy =5 (W, +uy,).

Our analysis follows methodology developed by Kachanov et al. (1994) and is based on one-particle
solution for transversely isotropic material. First, we obtain expressions for stiffness and compliance con-
tribution tensors of a spheroidal inhomogeneity embedded in a transversely isotropic matrix. The results
are specified for three geometries of inhomogeneities—strongly oblate, spherical, and strongly prolate ones.
The case of isotropic matrix (see Sevostianov and Kachanov, 2002) is recovered as a limiting case. Then, the
stiffness and compliance contribution tensors are used to calculate the effective elastic properties of the
composite.
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2. Single inhomogeneity
2.1. Statement of the problem

We consider a certain reference volume V of an infinite three-dimensional transversely isotropic medium
with an embedded inclusion of volume V,—a region possessing elastic properties different from those of the
surrounding material. The properties of the inclusion and of the matrix will be denoted by an asterisk and
by “0”, respectively. We assume the perfect contact between the matrix and the inclusion:

] =0, [oyn;] =0 (2.1)

where u; is displacement vector, g;; is the stress tensor and #; is unit vector normal to the interface. The
bracket stands for the difference between the values of a function at different sides of the interface.

We start from the system of equilibrium and compatibility equations for the medium with a single
inclusion

diV[Gk/(X)] = 0, Curl[ Ukl( )Gk[(x)] =0 (22)
where the Curl is the operator of compatibility. We assume that the tensor S;;/x) is represented in the form
Sijkl( ) Sl/kl + Sljkl ( ), Sz/kl Sj/k/ Sg‘kl (2-3)

where V(x) is the characteristic function of the domain V.. This allows to write

diVGk[(X) = 0, Curl[ z]klakl( )} = —Curl[ Uklak,(x)] V(X) (24)

Using an ordinary procedure (see Kunin, 1983) the system of differential equations can be replaced by
equivalent integral equation as follows:

o (x _JAI /an/ x') l/klo-kl(xl)]dx, (2.5)

where o}, (x) is the external field which satisfies the equation
Curl[S z/klak/( x)]=0 (2.6)

and given conditions at infinity. In other words, a¢,(x) is the solution of corresponding homogeneous equa-
tion. The kernel of Eq. (2.5) can be expressed via the second derivatives of the Green tensor G;; for displace-
ment in elastic medium as follows:

Qijmn( ) C?/pq[ quﬂé( ) + l[k]( )Cglan Pifkl(x) = Gi)(kvl)(/(x)

g 2.7)
Cl?lmn = (Sglmn) 17 ijmn = 5i(m5n)j

where the parenthesis in subscripts means operation of symmetrization by corresponding indices, for exam-
ple 0imbu); = 3 (Gindnj + 0in0m;)-

Let us consider the Cartesian coordinate system with axes coinciding with the semi-axes «; of the ellip-
soidal domain V,. Then, the ellipsoid can be described using the following relation:

xila)x; <1, ay = a 2o, (2.8)

If the external field ¢, (x) is uniform in the domain V, then the stress field o;(x) is also uniform inside V'
(Eshelby, 1957) and can be determined by the following relations:
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0;(x) = Uit + Qyjun(@)Syt] oy ()], x €V
Qijmn (a) = Cg‘pq [lpqm” + qurs(a)cgsmn]

1 i B
Pntay) = 3= [ Poa; 010 29)

where the P, (k) is the Fourier transform of the tensor function P,,,(x) and the integration is carried out
over the unit sphere Q;. If the main medium (matrix) is isotropic, tensor P,,(a) has the ellipsoidal sym-
metry and is defined by nine essential components which can be expressed in terms of elliptical integrals. It
is reduced to elementary functions in the case of spheroidal shape. The explicit relations for these tensors in
the case of isotropic linear elastic medium are well known (see Sevostianov and Kachanov, 2002, for exam-
ple). In the text to follow, we determine tensor Py, for a transversely isotropic matrix.

Our analysis requires explicit analytic inversions of fourth rank tensors. Such inversions can be done by

representing these tensors in terms of a certain “‘standard” tensorial basis Tfjl ),, ce Tl(.fk), (Kunin, 1983; see
Appendix A):

6 6
k k
Pij = ZkaSjk)H Oiju = Z qkTE,-ZI (2.10)
k=1 =1

2.2. Single inhomogeneity in a transversely isotropic material

At the first step, we will derive explicit expression for tensor Py, in the case of transversely isotropic
matrix

Piji = /VG:'/(JJ(X *xl)dx/‘(ij)(u) (2.11)

where G(x) is the Green’s function for the anisotropic unbounded medium and the symbol parenthesis ()
stands for the symmetrization over corresponding indices. In the arbitrary anisotropic medium, the Green’s
function can be represented in the form

Galx) = 1 Tal0,0) 212)

where (1,0, @) is the spherical coordinate system. Applying the approach developed by Vakulenko (1998),
Eq. (2.14) can be transformed in the surface integral over the unit sphere Q.

P=E- /(e’ E-¢) ' [VIT(e) —eT(e)]dQ (2.13)

where €', e’, e” are the basis vector of spherical coordinate system and
e 0 L 0
~ sinf O¢ 00

In Eq. (2.16), the second rank tensor E depends on the inclusion form and for the spheroidal inclusion
(a1 = ap = a,a3) it is defined by the following expression:

*

(2.14)

1 a
Ey= 50+ Emmy), &= o U= 0y —mm (2.15)

where m; is the unit vector in the z-axis. Taking into account that the medium is transversely isotropic, it is
convenient to find the integral (2.16) in the system of cylindrical coordinates. For this purpose, tensor I'(6)
and E should be rewritten as the function of (p, ¢,z) coordinates. Tensor I'(6) and its components for the
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elastic field in transversely isotropic medium have been obtained explicitly by Kroner (1953) (and result was
corrected by Yoo, 1974). Thus,

Ti(0,0) = I'pp(0)el ey + Typ(0)efey + I'yz(0)(ef e, + egey) + I'=(0)€je; (2.16)

where the quantities 'y, (0), I',,(0), I'p-(0) and I'..(0) are expressed as

I'yy(0) = 23: (b — a)4,)sin’0 — a;cos’0
" =7 sin’0\/4,sin’0 + cos0
3 .
bsin®0 + a,cos20
1 (0) =y bl ta

= sin’0+/A,sin’0 + cos26
23: c;cosf

=1 sin 0\/A,sin29 4+ cos20
—T \/A;sin 9+00520

where coefficients a;, b;, ¢;, and d; and A4,, 4>, and A; depend on the components of the tensor of elastic
moduli and these coefficients can be represented as

(2.17)

w ol

1
a=— [(sz = Ciun)(Casss — 4:Cosnz) + (Crizs + C2323)2}
1

1
b = o [(sz — A;C1111)(Cs333 — A1Cas3) + A1(Cii33 + C2323)2}

1
c; = 6— (C1|33 + C2323)(C2323 - AICIZIZ)
!

1 2.18
d; = p (Ca323 — A;C1111 ) (Ca323 — A1C1a12) (2.18)
I
3
g = 4nCi111C323C 1212 H(Aj —4;)
=1
(1)
C
A, = S
Cinz
where 4, and A3 are the roots of the quadratic equation
CiinConA? + ((Ciias)® + 2C1133Cam3 — Ciiti Caa3)A + Caz33Casny = 0 (2.19)
In Eq. (2.19), the basis vectors of cylindrical coordinates system e”,e?,e” are
cos @ —sing@ 0
e/ =|singp |, e =| cosp |, €=]0 (2.20)
0 0 1
Using the relationships between the basis vectors for spherical and cylindrical coordinate systems
e =e’sinf +ecosl, e =e cos— e sind (2.21)

one can rewrite operator V* in the form
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e’ 0 0
* — ’ — 2.22
= Sind g + (e’ cos @ esmH)ae (2.22)
Taking into account that for the spheroidal inclusion
N
¢ -E.¢ = = (sin®0 + Ecos?0) (2.23)
2n 2n
/ efeldo :/ efefdop = nl;
0 0
2n
/ eleleleldg g(e,,ek, + 040, + 0,40,,) (2.24)
0
v

7 30500 — 040y — 0a0)

2n
/e felefdp =
0

we obtain after qo-integratlon and applying the 7-basis (Appendix A)

Py = i /0 ”p;;,g,w) sin 0d0 (2.25)
where -
P(0) = = 57 {(by — Aja)Asin’ 0T}y + (261 — Aia)Asin®0T , — cid(sin’0 — Ecos’0)(Thy + Th)
+ [28(2b; — 4ya;)c08*0 — 2¢,4,(sin*0 — Ecos’0) + 2d,4;sin’0] T}, + 4d,Ecos”0T¢,, }
(2.26)
A, = (45020 + cos*0)** (sin?0 4 E*cos>0) (2.27)

Finally, the integration in (2.28) over the angle 0 leads to
P = P\T}y + PaToy + PsTo + PaTy + PsTiy + P Ty, (2.28)

The coefficients P1, P,, P3, P4, Ps and P4 are obtained as follows:
3

7
= ZZbl Ajar)J [, Pzz—z (2bl_Alal)J§])7

3 3
T 7
EZ _fZA[J ) P4:EZCI(J§1>_€2A1J¥>)
:‘ B (2.29)
= —n ) @b - 4@) @I - o) - EaP) + a],
=1
Ps = —2n2d1€2J§’)
=1
where 1 X
0 =A1/ : (1 —?)du S {1 _ 4 (x, n 1)}
14 (E = Da?][4; + (1 — A)u?] =1
: 2du 1 241
J(l)i/ u 212{/1111(1)1}
2 L @ -+ (- TR - (2.30)
, 1
Al

1 — 4,8
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Eshelby’s tensor is related to tensor Py as follows:
E 0
Sijkl = PijunCopa (2.31)

Using the algebra of tensor basis given in Appendix A, we can write tensor S,.E/.H in the form
° (@)
Sg»k; = ZSFTUI'M (2.32)
i=1

with the coefficients S are as follows:

S} =2P,C) + PsCY, Sy =P,Cy, S;=2P\Cy+P;C), Sy =2P,C)+ PsCY,
1
SE = §P5C(5’, Sg = PsCq + 2P4C} (2.33)
where P, ¢ are given by (2.32) and C!_( are given by (A.8) in Appendix A. Expressions for components of
Eshelby’s tensor (the connection between Cartesian components and representation in terms of tensor basis
is given by (A.7)) completely coincide with the solution of Withers (1989). Fig. 1 illustrates it in the case of
the following elastic constants:

Y, =2179, Y, =0579, (%, =0.689, (5, =1, Chy; =10.345 (2.34)

To calculate effective elastic properties of inhomogeneous material it is convenient to use property contri-
bution tensors Hyy; and N, (see Sevostianov and Kachanov, 2002; Kachanov et al., 2004)

£

Hyjp = —[(Sju — S?,-k/)*l + Qijkl]il

Nijw =—[(Clyy — Cou) ™ = Pya]

(2.35)

<[S <

Below, we specify our results for three limiting cases of primary interest: £ — oo (strongly oblate inhomo-
geneity), ¢ — 0 (strongly prolate inhomogeneity) and £ =1 (spherical inhomogeneity).

2.2.1. Strongly oblate spheroidal inhomogeneity
In the case of the strongly oblate (penny-shaped) geometry of the inhomogeneity, & = == 00 and the
expressions for the shape factors (2.30) are reduced to ’

m_ T 1 2,2y m 1
H=gmrola) @ =-1(-zm) +olz) 236

Substitution of these expressions into (2.29) gives the following formulas for tensor P and its coefficients
P1_6Z

. 1
P=P +lpi4 o<—2> (2.37)
¢ ¢
4 1
Py=0, P,=0, P3y=0, Py=0, Ps=—, Pi=—; (2.38)
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Fig. 1. Dependence of the components of Eshelby’s tensor on the aspect ratio of an inhomogeneity. The stiffnesses of the matrix are
Sy, =2.179, Y, = 0.579, C%,, =0.689, C,,3 = 1, and C%;, = 10.345. The curves are completely coincide with those calculated
by formulas of Withers (1989).

Pt=_
T20520 + G (VA2 + V) VA

P 4C + CU/ A A5
' 420 + CO) (VA + VA3 A A

pio L[ [, actrcivad
P2ct |\ 2C) T 20200 + ) (VAL + VAs) A
- 4Cy + C?

(2.39)
: 4¢y + C?

Pé=_
P205200 + C) (VA + V) VA

pi L] PG, 400+ GG +8<C§)2
ooV @)+ AUV + VA VA
Pf; _ —Cg(Az + A5 + VA245) + 4C2

2O + AW
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Note that for the computation of the principal term in expansion of P~! with respect to & we have to retain
first two terms in P since tensor P° in (2.37) does not have an inverse. Eshelby’s tensor can be expressed in
terms of basic tensors as follows:

O

SE

Penny- Shaped Co + ZT ) (240)

In the case of rigid disk of radius a embedded into an elastic material (of volume V), we can express tensor
N in terms of tensor basis as

3

a
Niju = =

% (m Ty +mTh) (2.41)

with coefficients

16 VA (VA + V) (20 + CY)

=3 (VA A;C? + 4C7)
O (2.42)
32 c° VA A;CY + 4C
e — 2
2= 3 (V20 T ok (Vi + V) (2 + C)

and A4, A, and A3 are given by (2.18) and (2.19). If, instead of rigid inclusions, we have a crack of radius a,
then the compliance contribution tensor has to be considered:

a3
Hij = 3 (hsTj + heTiy) (2.43)

with coefficients

64 c —4(CY)* +2C°(2¢ + ©Y)

hs = —=— ||| 22
WA IV Uy + V) [Ch2C) + C) (2.44)

8 (VA + VA)(2C + CY)
3G+ ) -2y

2.2.2. Strongly prolate spheroidal inclusion
In this case, a3—oo and the aspect ratio ¢ — 0. Then, the expressions for the shape factors (2.30) are
reduced to the following simple ones:

n_ 2, 62‘];1) -0 (2.45)

Using (2.18), the following expressions can be obtained

(2.46)

3
; 1
, by — ) = ———

IZ nCO Z( ) = AT

Substitution of (2.45) and (2.46) into (2.29) leads to the expression of tensor Py, in terms of tensor basis
with coefficients
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1 1 1 2
PP=———— Pp=————+— P3;=0 P;=0, Ps=—, Ps=0 2.47
T2+ ) P2+ ) T2y ) Ty (247)
and therefore, formula for the Eshelby’s tensor (2.31) can be written as
) C)+C) 3
SE — 1 (1) 1 2 T(Z) 4 3 T(3) 4 T(S) 2.48
Cylinder = 50 4 Y 207+ €3 2CY + € 249

Now formulas (2.35) allow us to write expressions for property contribution tensors of a rigid cylinder and
a cylindrical pore. In the case of a rigid cylinder, the stiffness contribution tensor N = V7 ZanaTEj}g, has the
following coefficients n,:

9 C2C + CY) ! !
CO — 2 1 2 — CO 5 CO
( 2 )a ny C(l) + Cg 5 ns 3 + 4 4 ,
ns =2CY  ng= o0 (2.49)
For the cylindrical pore, we can write H;, =~ Zdthf;‘k), with the following coefficients:
B — 209¢CY — C2¢Y + €9) By — 1.2 - c’
4C3(C5Cy — C1CY) e 2(C3¢4 - CC)
c; 8 Y
hy = - hs =—, he= 1 (2.50)

ea-ady e M ag-ag
2.2.3. Spherical inhomogeneity

The case of spherical shape of the inhomogeneity (a; = a» = a3 = a or £ = 1) loses its simplicity if the
matrix does not possess isotropic properties and the formulas for components of tensors P and SF are
rather lengthy. First of all, the expressions for the shape factors (2.30) can be written as

S0 _ 2 {1_1 A, In <1+\/1—A,>}
b1 — 4 2 /1T—4, V1I—4
(2.51)
S0 _ 2 14 1 1 In + V1—
2 1—4, 2\/—1_/1, \/1— A,
Substitution of these results into (2.29) gives the following expressions for coefficients P;:
1 Cl
Py = 8A ( Cefi + 1 gl)
g
P, = 4C0 + P,
L (o 2
Py = 84, G+ (i — &)
(2.52)

1 0
Py (e S)Ul—g»
JP 1 el c?
2C° 4A [ (fi — gz)+C(<),f2(C(1)+72)g1]

1 (o 0 9
re gy (5 (@45)e)

Ps =2P; +—
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where
JE S s
g =7 — 40, gy =AY — 4505 (2:53)
4p = C11Cla(A2 — 43)

and coeflicients entering expression (2.33) for Eshelby’s tensor are

_ 2C)(—4Cefi + Cig)) + CLACS + C)(fi — &)

E
S51 = 324,
SE — C(z)(_4cgfl + C(S)g]) +-£
52 324, 4
GE — C3Co(fi — &) + C3[2C5g, —4CE(fi + &5)]
53 324,
2.54
o _ CUAC+ YU — g5) +2CH-CUfi +2,2C) + CY)] 234)
54 164,
O a0+ C2chss + (20 + Cigy + 203 - 20))
s 16C%4,
St — —2C3CYf1 + CH(4CS + CY)(fi — &5) +4C42,(2CY + C3)
5o 164,

The property contribution tensor of a spherical inclusion of volume V™ can now be obtained via formulas
(2.35). For a rigid spherical inclusion, we have the stiffness contribution tensor N,;; = V7 Z“nsz_fk)l with the
following coefficients:

_ —C8i +26,(2C1 + CY)

n 164,4,
_ 3254,
CY(~4Cf + Chg,) + 8714,
4C3+ )0 —2)
o 2.55
e 324,4, (2.55)
32C54,
s ="~ 0 0 0 0 0
47574, + G[-2Cf> + (2C) + Cy)gy + 2C5(f1 — &)
. —4C; + Clg,
¢ 164,4,
where 4. — —(4C§+C[5’)2(fl—gz)2+4(—4C2f1+C2g1)[—C2f1+2gz(2c?+cg)].

51242
. 14 . . . . * .

For a spherical pore, one can write the compliance contribution tensor H,y; = %Zzhan.ﬁl with coeffi-
cients A, as follows:

1
hl :# h2 — h3 q3 q4

i

) 4 ——~
4(‘]1% - ‘1394) q 2(91‘]6 - ‘13‘]4) 7 2(91% - 513(14) 7

4
hs ==, hg=—3"N (2.56)
qs 9196 — 9394
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where

q, = 161Ap {2(C?)2(4C2f1 — Clg,) +2C3CH(CUH — 2CYg,) + CO[164, — (C§ + CH(4CS + CH A

+8,(4C5(CY — C) + (3 + cg)cg)]}
_ o1+ GG~ Cg) _Jﬁl)]
324, 4

= 1614,, {14(CY)° + (€Y Ch + CICICH(— i + ga) + 2C3[84, + 2CICEfi + CACHi — CiCle
—2(C) + N CGesl}

q, = 16lAp {[(Cﬂ)z + COCY(ACY + CU) (=11 + g5) +2C0[84, + CO(4C2(fi — g5) — Cg))
+CY(CY - 20581}

(O [44,7 + C(=2C%% + (2C + C)g, + 283/ — )
noer 32C34,
9% =1 61411, {—2C§C2C‘§g1 +2(CY’[CU — 28,(2C) + CH)] + CL[164, — fi(4C5(Ch — CY)

+CY(Ch+ ) + (Ch+ CAC + e |
(2.57)

In the limiting case of isotropic material, the formulas for compliance contribution tensor recover the cor-
responding expressions derived by Kachanov et al. (1994) (cracks and cylindrical pores) and by Nemat-
Nasser and Hori (1993) (spherical cavities). In the case of rigid inclusions the formulas of Sevostianov
and Kachanov (1999) are recovered (to within two misprints in the last paper).

3. Transversely isotropic material containing multiple inclusion
3.1. Non-interaction approximation

In this approximation, the interaction between any two inclusions is neglected and therefore, each inclu-
sion is assumed to be loaded by the same remotely applied stress. The total inclusion compliance and stiff-
ness tensors are taken as a sum of individual compliance tensors. If A" and N™! are the compliance and
stiffness tensors of non-interaction approximation, then

NI _¢0
Hljkl - § Hiik17 Ukl Stjkl +szkl

NI E eff 0
Nt]kl - N’]kl’ Ct]kl - Cz/k/ + Hl/kl

where Sl]k, and C? ;1 are compliance and stiffness tensors of the matrix. Sfjf,f, and Cf s are the effective com-
pliance and effective stiffness tensors under the assumption of non-interaction approximation.

This approximation is considered to be the most important one because of several reasons. First, it iden-
tifies the proper parameters of inclusion concentration (Kachanov, 1994) and the overall anisotropy for
inhomogeneity of various shapes. Second, it serves as a basis for the effective medium theories that account
for interactions by placing non-interacting defects into some effective environment and the last reason is

(3.1)
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Fig. 2. Effective elastic stiffnesses of a transversely isotropic material containing parallel spheroidal rigid inclusions of identical aspect
ratio ¢ at various volume fractions of inhomogeneities (as functions of &). Comparison of calculations with non-interaction
approximation (3.1) and effective field method (3.26).

that it is reasonably accurate at low inclusion volume fractions, but, for crack like inclusions, it remains
accurate up to relatively high crack densities. Dashed lines in Figs. 2 and 3 illustrate the effective elastic
moduli of a transversely isotropic material containing rigid inclusions and pores (calculated in the frame-
work of non-interaction approximation) in dependence on their shapes.

3.2. Effective field method of calculation of the effective properties

To take into account the interaction of inclusions, we first consider an infinite body containing a random
set of spheroidal inclusions having the same shape and orientation. As before, we denote by V(x) the char-
acteristic function of region V, occupied by the inclusions. The strain tensor ¢;(x) and stress tensor ¢;;(x) in
the composite satisfy the following relationship (Kunin, 1983):
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Fig. 3. Effective elastic compliances of a transversely isotropic material containing parallel spheroidal pores of identical aspect ratio &
at various volume fractions of inhomogeneities (as functions of &). Comparison of calculations with non-interaction approximation
(3.1) and effective field method (3.26) (inverted for compliances).

) = £5(x) + / Pya(x — ¥ ) () (3.2)

05(x) = 0%(x) + / 0yt — X)) Y (3.3)
where

4,(%) = Clyu(®)V (%) (3.4)

Here ¢° and ¢° are the external strain and stress fields acting on the medium, the kernels P(x) and Q(x) are
determined in (2.7). The integration in (3.2) and (3.3) is over the entire space. On the basis of (3.2) and (3.3),
we can write the expressions for the mean values of the strain and stress fields in the form
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(es() = £ + / Pys(x — ) (g () d’

(0300 = 7+ [ Qo = XS0 )Y

For a spacial uniform set of inclusions &;{x), ¢ ;(x) and g;;(x) are homogeneous random ergodic functions.
Hence, (¢) is a constant tensor whose value can be found by spacial averaging of a typical fixed realization
of the random function ¢(x). Because of the linearity of the problem the strain field ¢;(x) is represented by
the external field 8?j through the relation

& () = Ay (x)e) (3.6)

where A(x) is a certain random function of coordinates. This function has to be obtained from the solution
of many-particles problem. After substituting the expression for ¢(x) in the formula for ¢(x) and averaging
the result, we obtain

<q[j> ZPC,-_A,-HS;?,, Ci/ljk/ = C}jmn (Amnk) (3.7)

(3.5)

where p is the volume concentration of the inclusions (p = ( V(x))).

It is assumed henceforth that the average strain in the composite (g;)coincides with the external field &,
and does not depend on the properties and concentration of the inclusions ((¢;) = 8?]-). This mean value is
determined by the conditions at infinity. In this case, the question arises of the action of integral operators
with kernels P(x) and Q(x) on constants. It was shown in Kanaun (1983) that the unique definition of these
actions depends on a given type of external field (specified in the problem): the stress field a?j or strain field
s?/ For instance, if the stress fields is fixed, operator P and Q act on constants as follows:

/ O(x —x')dx' =0, /P(x —xX)dx' = (8" (3.8)

However, if the deformation of the medium is constrained at infinity (the strain tensor is fixed as was sup-
posed above), the result will be different

/Q(x —x)dy' = —C°, /P(x —x)dx' =0 (3.9)

Hence, we can write in this case
i f 0 A
(o) = C?jkl<8kl>7 C?/‘k/ = Czjjkl +PCzjjk1 (3.10)

where C°T is the tensor of the effective elastic moduli of the composite.

Thus, the problem of obtaining the effective elastic moduli C " reduces to evaluation of the tensor C*!
determined in Eq. (3.7). This tensor depends on the solution of many-particle problem through the function
A(x). For evaluation of C*!, we use below the self-consistent scheme named effective field method (EFM).
This method has a long history and was mainly used in the nuclear physics and in the theory of phase tran-
sitions for description of many-particle interaction. In application to the mechanics of composite materials,
this method was developed by Kanaun (1983), Kanaun and Levin (1993, 1994), Markov (1999).

Let us consider an arbitrary ith inclusion that occupies the region V; in a fixed typical realization of ran-
dom set of inhomogeneities. We denote by ¢, (x) the local external field acting on this inclusion. The field
&4 (x) is composed of the external field ¢” and the disturbances of the field due to surrounding inclusions.
Self-consistent schemes in which interaction between inclusions are taken into account by introducing local
external field acting on each inclusions are called the effective field method. Let us introduce the field &;(x)
that coincides with &}, (x) inside the region V. It follows from (3.2) that
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&(x) = F?] + /P,-jk,(x —X)Chypmmn (X )V (33 X ) dx’ (3.11)
where V(x;x') is the characteristic function (with argument x’) of the region ¥V, defined by the relation
V,= U V, when xe&V, (3.12)
ik

In the simplest variant of the effective field method, let us introduce two simplifying assumptions con-
cerning the structure of the field j;(x), i.e. hypothesis of the EFM:

1. The field &/;(x) is constant (uniform) in each region occupied by inclusions and is the same for all
inclusions.

2. The random field &) (x) does not depend statistically on the geometrical characteristics and elastic prop-
erties of the kth inclusion, occupying region V.

Using hypothesis one, we obtain that the strain field ¢;(x) is connected to &, by the relation obtained
above for the single inclusion

& = Aywel,, A= (I+pPC)! (3.13)

Note that for the spheroidal inclusions of the same shapes and orientation A4 is the constant tensor that is
the same for all inclusions.
Relation (3.13) allows to express the strain field ¢(x) in the arbitrary point x of the composite via the
local effective field &"
&j(x) = 8?]- + /P,-ﬂd(x —XC4 & V(x;x')dx, (3.14)

klmn“mn

A 1
Cijk[ = C, Amnkl

ijmn
and to obtain the self-consistent equation for field ¢* determination
ij klmn“mn

&;(x) = &) +/P,-jk1(x —x)CL et V(x;x)dy (3.15)

Let us average the both sides of Eq. (3.15) under the condition that x € V. Taking into account hypothesis 2
of the EFM, we can write

(e;,(x) | x) = sg. +p/P,-jk, (x = x)Clpi, P (x — X)dy’ (3.16)
) |y
YT )

Here symbol (- | x)means the ensemble average provided that point x is in the region V. It follows from def-
inition (3.12) for V(x;x’) that ¥(x) is a continuous function and

P(x) =0 when x=0 (3.17)

Because of the weakening in geometrical linkage between the positions of the inclusions when the distance
between them increase, the following relation takes place

Y(x) -1 when |x]|— oo (3.18)
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Function ¥ (x) defines the shape of the “correlation hole” inside of which a typical inclusion is located (the
region in the vicinity of each inclusion the finding in which the center of some other inclusion is improb-
able). If the random set of inclusions possesses some symmetry (in the statistical sense) it influences the sym-
metry of function ¥ (x). In the case when the random set of the inclusions is statistically isotropic, function
P(x) is spherically symmetric, i.e. ¥ (x) = P(|x]).

The deviation from the isotropic distribution of the random set of inclusions can lead to texture. In many
cases, such texture can be describe by a two-rank tensor o;; . This tensor determines the linear space trans-
form, which converts function ¥(x) into a spherically symmetric one

vi= o, Py)=¥(yl) (3.19)
In this case, the ellipsoid A4, defined by the expression |ax| < 1 with semi-axes o, o and o3 describes the

shape of the correlation hole. Taking into account the relations (3.9) when the strain field is fixed in the
problem, we can write Eq. (3.16) in the form

() 1) =& — p / Pyt = X) Clptin ®(x — ')

(3.20)
Px)=1—-Y(x)
Identifying now the mean (g/(x) | x) with the effective field ¢, we can find from (3.20)
&, = Dyulen), D= (I—pPCt)"! (3.21)
where it is denoted
Py =- / Py (x)®(x)dx (3.22)

If we assume in the considered case that the shape of the correlation hole id spheroidal (concentric with
inclusion but not necessary with the same aspect ratio) then tensor P can be calculated explicitly.

After the connection (3.21) is established, it can be substituted in (3.13) and then we can find according
to (3.7)

ct =1 —ppPPct)! (3.23)
and
Cze/flfl = C?/'kl "‘PCA(] —PP(DCAY1 (3.24)

In the special case, the shape of the correlation hole can be coincided with the shape of inclusion itself. In
this case, P® = P and expression (3.24) is simplified

CZ'flil = C?/kl +P[(C}/k1)7](1 _P)Pijkl]q (3-25)

Note that the same expression for the tensor of effective elastic moduli can be obtained for by so-called
Mori-Tanaka method (Mori and Tanaka, 1973), (Benveniste, 1987). This method is based on the assump-
tion that every inclusion in material behaves as isolated one in the matrix and undergoes a constant external
field that is assumed to coincided with the average strain field in the matrix. Hence, Mori-Tanaka’s method
gives the result coincided with the effective field method if we accept as an additional assumption that the
shape of correlation hole coincides with the shape of typical inclusion. In general, these shapes can be
different and tensors P” and P are not the same.

As it follows from (3.25), the composite material is macroscopically transversely isotropic and is
characterized by five independent effective elastic moduli. In T-basis tensor, C"' can be written as

C" =T + O T+ O T + O T+ O T+ YT T (3.26)
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Fig. 4. Effective elastic constants of a transversely isotropic material containing randomly located rigid spherical inclusions.
Comparison of non-interaction, effective field and quasi-random lattice methods: (a) components of the elastic stiffness tensor and

(b) engineering constants.

where
off _ 0, P LC{ .
. -1
CT=C+p|l—+(1-p)P,
G
. p [
5 =G+ L‘—j— (1 —p)&]

eff _ eff
c = s

C=Cl+4p

5
p [Ci
4,

Ccff — CO
6 ()+A*

-1

4
FJF(I —p)Ps

+2(1 p)Pl]

(3.27)
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1

A =clcl—(cly?, a4 = 2{ {2%1+ (1 p)Pl} FA_C;+ (1 p)Pé} { (1 p)P3r} (3.28)

3.3. Comparison with the “‘unit cell” method

In the case of spherical inhomogeneities, we also compared our results with the calculations done via the
“unit cell” method (Kushch and Sevostianov, 2004). The basic idea of this method consists in modeling an
actual micro geometry of composite by the idealized periodic structure with a unit cell containing from one
to several particles, for which the homogenization boundary-value problem is to be stated and solved.
Sometimes, this model is referred also as the ““lattice” model reflecting the fact that the centers of inclusions
form a spatially periodic lattice. This model provides a natural way, through the periodic boundary con-
ditions on the opposite cell facets, to take into account interactions among whole infinite array of inhomo-
geneities. Also, the deterministic structure of unit cell enables an accurate solution of the corresponding
periodic boundary-value problems. These features make the unit cell approach one of the most appropriate
numerical methods for studying the high-filled strongly heterogeneous composites, where the structure and
interactions between the particles should be taken into account to a maximum possible extent.

Figs. 4 and 5 illustrate comparison of effective elastic constants calculated via non-interaction approx-
imation and effective field method of Levin and Kanaun with those obtained in the paper of Kushch
and Sevostianov (2004) by quasi-random variant of the “unit cell” method.
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Fig. 5. Effective elastic constants of a transversely isotropic material containing randomly located spherical pores. Comparison of non-
interaction, effective field and quasi-random lattice methods: (a) components of the elastic compliance tensor and (b) engineering
constants.
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4. Conclusions

The paper addresses the problem of calculation of the effective elastic properties of an inhomogeneous
material consisting of transversely isotropic phases. As a first step, the problem about a transversely iso-
tropic medium containing a single inhomogeneity is solved. Eshelby’s tensor for such a problem is rederived
in the form suitable for calculation of the effective properties. Then, the stiffness/compliance contribution
tensors for such an inclusion are constructed. Applying the methodology of Kachanov et al. (1994), the
property contribution tensors are used for approximation of the effective elastic properties of composites.
In the present paper, the derivation is done in the frameworks of non-interaction approximation and the
effective field method of Kanaun (1983), Kanaun and Levin (1993, 1994), Markov (1999). The results
are compared with numerical simulations via the “unit cell” method given by Kushch and Sevostianov
(2004). Application of other approximate schemes (Mori-Tanaka’s scheme, differential method, effective
media scheme) may be done via general formulas given in the paper of Tsukrov and Eroshkin (2004) on
the base of non-interaction approximation.

Appendix A. Tensorial basis in the space of transversely isotropic fourth rank tensors: representation of certain
transversely isotropic tensors in terms of the tensorial basis

The operations of analytic inversion and multiplication of fourth rank tensors are conveniently done in
terms of special tensorial bases that are formed by combinations of unit tensor and one or two orthogonal
unit vectors (see Kunin, 1983 and Kanaun and Levin, 1993). In the case of the transversely isotropic elastic
symmetry, the following basis is most convenient (it differs slightly from the one used by Kanaun and
Levin, 1993):

Ty = 0,04, To)=(040,+ 60,0y —0,;0,)/2, To)=0yumm, T, =06mm,

Tl(js,()l = (Oymm; + Oymym; + O ymym; + O ;ymym;) /4, Tfj.élj, = m;m;mmy, (A.1)

where ©;; = 6; — m;m; and m = m; e; + mye; + mzes is a unit vector along the axis of transverse symmetry.
These tensors form a closed algebra with respect to the operation of (non-commutative) multiplication
(contraction over two indices):

(T :TW),, = 7 7 (A2)

ijpq = pakl

The table of multiplication of these tensors has the following form (the column represents the left multiplier)

T(l) T(2) T(3) T(4) T(5) T(‘))
T 27M 0 27 0 0 0
T® 0 T® 0 0 0 0
T® 0 0 0 7w 0 T®
T 279 0 27©® 0 0 0
) 0 0 0 0 7O/ 0
T©® 0 0 0 T® 0 T©
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Then the inverse of any fourth rank tensor, as well as the product of two such tensors are readily found
in the closed form, as soon as the representation in the basis

6 6
X=>"x71% v=> 171" (A3)
k=1 k=1
are established. Indeed

(a) Inverse tensor X' defined by is given by X! X, = (X;nX,L,) = Jiu is given by

ijmn mnkl
_ XG 1 X3 X4 4 2X1
x'=2070) 4 = 7@ 23 p@) 24 p@) L 7S 4 221 p(6) A4
24 +X2 4 A4 +X5 * A (A4)

where 4 = 2(X1X6—X3X4).
(b) Product of two tensors X:Y (tensor with ijk/ components equal to X, Ymis) 1S

X7 =2X Y, +X:37)TY + X,7,TP + (22X, Y3 + X3Y6) T 4+ (2X,Y, + XV4)TW

1
+3Xs YsTS) 4 (XeY6 + 2X,75)TO. (A.5)

If x5 is the axis of transverse symmetry, tensors 7", ..., 7' given by (A.1) have the following non-zero
components:
1) _ () () (1)
Tllll - T2222 - T1122 - T2211 - 1
1

@ _ 2 _ Q2 e _ pQ) 2
T1212*T2121*T1221*T2112*T1111*T2222*§

2) @ 1
T§122 = T22>11 = )
(G) _ B3 _
T1133 - T2233 =1
(4) (4)
Ty =Ty, =1
5 5 5) 5 5) 5 5 5 1
T§3)13 = Tg3>23 = T§331 = T(23>32 = Tgm = T(32)23 = T.Esl>31 = T(32>32 4
(6) _
T3333 =1
A general transversely isotropic symmetric fourth rank tensor, being represented in this basis
Vi = >, T}y, has the following components:

Ui =Pun+Pu»)/2, ¥, =2%0n, Ys;=Pus, ¥;="Puu, VYs=4%n3, Y¢= Pui
(A7)

In this manner, we could write the components of the stiffness tensor as follows:
C? = (C(l)lll + C?lzz)/z’ Cg = 2C(1)212’ C(a) = C?mv CS = C(3)311a Cg = 4C(1)313» Cg = C(3)333
(A.8)
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